
Performance scalability and dynamic behavior of Parsec
benchmarks on many-core processors

Oved Itzhak
Technion

ovedi@tx.technion.ac.il

Idit Keidar
Technion

idish@ee.technion.ac.il

Avinoam Kolodny
Technion

kolodny@ee.technion.ac.il

Uri C. Weiser
Technion

uri.weiser@ee.technion.ac.il

ABSTRACT

The Parsec benchmark suite is widely used in evaluation of parallel

architectures, both existing and novel, the latter through

simulation. In particular, it is used for evaluation of highly parallel

architectures. It is well known that parallelism bottlenecks occur

both in the architecture, (e.g., shared-resource contention) and in

the algorithm, (e.g., data-dependency). In this paper we study the

latter, i.e., the inherent parallelism scalability and the dynamic

behavior of the benchmark programs themselves, independently of

the architecture.

To this end, we present a new simulator that performs efficient,

functionally accurate, simulation of a hypothetical ideal parallel

architecture with no parallelism bottlenecks, where any measured

parallelism limitation is necessarily due the benchmark itself. By

applying this methodology to a continuum of simulated machines,

ranging from a few processors to thousands of processors, we

characterize the dynamic behavior and scalability of different

benchmarks. We find that only a quarter of the Parsec benchmarks

truly scale well to hundreds of processors. Moreover, somewhat

surprisingly, we find the Amdahl effects are responsible for lack of

scaling in only about half the non-scalable benchmarks. The rest

are limited by their inability to produce sufficient work for all

cores, and the others benchmarks’ scalability is limited by Amdahl

effects.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Performance attributes.

General Terms

Performance.

Keywords

Parsec; many-core; architecture; simulation.

1. INTRODUCTION
The Parsec benchmark suite [1] is widely used in parallel

architectures research. While the benchmarks in this suite are

implemented for mainstream operating systems (Linux and

Microsoft Windows), the workloads are relevant to parallel

architectures regardless of the OS. The primary goal of our work is

to study the inherent behavior of multithreaded application

programs on many-core machines, excluding effects of the

operating system.

Parallel benchmarks are compute-intensive, hence I/O and kernel

space processing is not only unessential for performance

measurements, it actually constitutes noise because of compute

resource consumption by background processing (e.g., interrupts,

daemons). Indeed the benchmarks are typically used in settings

that attempt to prevent OS-level scheduling [2] and sometimes

even filtering out kernel-space computation from the

measurements [3]. Furthermore, the Parsec benchmarks define the

concept of Region-Of-Interest (ROI), separating the compute part

of the benchmark from setup and cleanup, which typically include

environment-specific operations such as resource acquisitions,

(e.g., memory, synchronization objects, thread creation) and I/O

(for both input data sets and final results).

In order to study the scalability of Parsec benchmarks, we develop

a novel simulator that can execute Linux programs, and thus

supports any Linux benchmark, but takes into account only user-

space code such that it is oblivious to the OS’ scheduler. This

saves the need to strip down the OS to minimize background

processing interference, and also allows us to simulate a larger

number of cores than supported by the underlying OS. In addition,

the simulator has special provisioning to restrict measurements to

the ROI.

We use our new simulator to measure how performance scales as

the number of cores is increased. Moreover, we extract the

dynamics of the number of active threads over the course of the

execution. This illustrates phases in the benchmark’s life cycle,

and highlights where parallelism bottlenecks lie within the code.

We use an ideal parallel architecture model, one with no

contention on shared resources, (e.g., caches, interconnect), a

perfect core (1 cycle per instruction), and a perfect memory

hierarchy (taking 1 cycle per memory access). This allows us to

isolate the inherent performance properties of the benchmarks.

We profile the Parsec benchmarks with a range of threads count

and corresponding numbers of processors. Of the 12 benchmarks

we study, we find that only three scale well to many hundreds of

processors, whereas the rest peak between tens to a couple of

hundreds of processors. Of the latter, four are limited by their

inability to provide enough work for all available processors, and

five are limited due to a classical Amdahl law effect [4].

2. RELATED WORK
The Parsec benchmark suite is implemented on top of the Linux

OS and is popular in Linux environments, running both on

physical machines [5] and full-system simulators [6][7][8]. The

benchmarks themselves, however, represent emerging parallel

workloads, and are not inherently dependent on Linux. One

technique to profile the benchmarks on a novel architecture or on a

many-core architecture not supported by Linux is to collect traces

in a Linux environment with the benchmark running as many

threads as there are cores in the target architecture [9][10] and

using these in a trace-driven simulation. However, this technique

loses timing-dependent functional effects, which may lead to

inaccurate performance prediction. In contrast, our simulator

employs a feedback loop between the trace collection and the

trace-driven timing simulation for accurate performance modeling.

A similar mechanism was used in the Graphite simulator [11]. Like

our simulator, Graphite also collects traces between inter-thread

This work was partially supported by the Intel Collaborative Research

Institute for Computational Intelligence (ICRI-CI) by an Intel
Heterogeneous Computing research grant and by G. S. Elkin Research

Fund.

interaction points. However, Graphite’s main requirement is to

minimize single simulation latency, to which end it sacrifices the

accuracy of inter-thread dependency effects, e.g., by employing lax

synchronization and analytical modeling. In our simulator the

tradeoff is the opposite – our main requirement is accurate

simulation of inter-dependency effects and we sacrifice simulation

latency for that. Specifically, our simulations can exploit only a

single physical core, as it runs one thread at a time. The high

latency of a single simulation is mitigated by the fact that studies

typically involve many independent simulations of different data

points and with different parameters, which can run simultaneously

on numerous physical cores.

The general characteristics of the Parsec suite on contemporary

architectures were studied in earlier work [12][13]. The software’s

scalability assuming ideal, perfect hardware architecture was

studied by standard system simulation for up to 16 cores [2]. In

this paper we push the envelope much further – we evaluate the

workload on architectures including even thousands of processors.

We do so by leveraging our simulator’s scalability and efficiency,

which allow it to simulate architecture with more cores than

supported by the operating system.

3. THE SIMULATOR
Our simulator’s architecture resembles that of Graphite [11]. It

employs binary instrumentation to observe the dynamic instruction

stream, whereas the functional execution is performed by the

underlying physical processor. Like Graphite, it uses the Pin binary

instrumentation tool from Intel [14] and the simulator is

implemented as a Pintool. This means that only the user-space
code of the benchmark is simulated.

3.1 Timing simulation
To maintain the timing effect in the functional execution, (and thus

achieve the effect of an execution-driven simulation), the

instructions are scheduled to the physical processor in the order

imposed by the timing model of the simulated architecture. For

example, when two threads contend on changing the same memory

location (typically using atomic read-modify-write instructions),

the one that would execute first according to the timing model is

scheduled first to the physical processor. We control the functional

execution scheduling through per-thread semaphores. To delay

functional execution of a thread, the instrumentation code

(simulator’s code) blocks on the respective thread’s semaphore.

When the timing simulation determines the thread whose next

instruction should execute, it signals its semaphore. This unblocks

the thread, allowing its next instruction to functionally execute.

This means that the Operating system’s scheduler and other

processes in the system do not affect the timing simulation, thus

eliminating potential performance measurement noise.

3.2 Batching functional execution
Thread blocking and signaling incurs significant runtime overhead.

Therefore it is critical for simulation performance to minimize

such synchronization. A key observation towards reducing this

overhead is that in order to preserve the effect of simulated timing

on the computation, it is not necessary to functionally execute

instructions in the global order imposed by the timing model – it

suffices to execute them in dependency order. Inter-thread

instructions dependency occurs only when there are shared

operands. With Linux supporting processors with relaxed memory

consistency models [15], sharing operands requires the use of

memory fences to make visibility order guarantees. Hence, it can

be assumed that memory operands are not shared unless the

sharing threads delineate these accesses explicitly using fence

instructions. It therefore suffices to execute only fence instructions
in the order imposed by the timing model.

This observation allows us to functionally execute multiple

instructions of a single thread continuously without blocking as

long as no memory fence is encountered. Once a memory fence

instruction occurs, its functional execution is delayed until all

memory fence instructions in other threads that precede it

according to the timing model have been functionally executed.

This way subsequent instructions see the results of other threads’
instructions that precede them according to the timing model.

An example functional execution is illustrated in Figure 1. It

shows the instruction streams of three threads: T1, T2 and T3. The

small black rectangles denote memory fence instructions. Figure

1(a) shows the execution timing in the simulated architecture. The

arrows show dependency order, from instructions that are ordered

earlier to ones that are ordered later. Figure 1(b) shows a

functionally equivalent execution: memory fences are executed in

the same order as in Figure 1(a), preserving inter-thread

instructions ordering.

(a) Timing model on the simulated architecture

(b) Valid functional execution of (a) under a weak memory

consistency model

Figure 1: Functional execution scheduling

The simulator exploits this degree of freedom in the functional

execution order, and batches the execution of consecutive

instructions preceding a memory fence while collecting traces. It

then executes the timing model simulation on the traces to

determine the thread that first executes its next instruction (a

memory fence). This thread is then allowed to execute and collect

a new trace and so on. The simulation process thus alternates

between two phases: trace collection from a single thread until a
fence is encountered, and timing model simulation.

It should be emphasized that this functional execution batching is

just a simulation runtime optimization. It has no effect on the

timing simulation because the simulated architecture has strong

memory consistent model and no pipeline or out-of-order

execution, hence a memory fence is equivalent to NOP instruction.

3.3 Thread blocking
Since kernel-space code is not simulated, the simulator needs to

know when a thread is blocked inside the kernel in order to
exclude it from performance counters and from scheduling.

We use a simple scheme: every syscall is assumed to be blocking.

If it is not blocking, it will return very quickly in terms of

simulation time, because the kernel is not simulated. If it is indeed

blocking, it will return when another thread performs the
unblocking operation, which occurs at the correct simulation time.

3.4 Region-Of-Interest (ROI) Detection
The Parsec benchmarks mark the beginning and end of the ROI by

calling functions __parsec_roi_begin and

__parsec_roi_end, respectively. The former is called just

before spawning the worker threads, after setting up the data set to

operate on. The latter is called just after waiting for all threads to

exit and any output data is generated after it. It would have been

simple to detect the calls to these functions in the simulator and

restrict the measurement accordingly. However, with hundreds and

thousands of threads, just the creation of the threads and waiting

for their exit, which occur inside the ROI, may affect the

performance results. Indeed, two benchmarks (blackscholes and

raytrace) use a pthreads barrier at the beginning of the worker

threads to ensure that worker threads do not make progress before

all are created. However, the pthreads barrier implementation,

whose user-space part of the code is included in the simulation, has

the last thread that enters the barrier unblock all other threads in a

loop. This is a serial operation whose length is proportional to the

number of threads, which has a significant impact on performance

results.

We solve this predicament by introducing the concept of a

simulator-level barrier. The simulator can be given a name of a

function in the simulated program that when entered is considered

as a wait on the simulator’s barrier, meaning that the thread gets

blocked by the simulator itself, i.e., it is excluded from simulation

scheduling. Only when the designated function is entered the

specified number of times (the expected number of worker threads)

all are unblocked and it is taken as the ROI-begin mark. Since this

is done in the simulator, unblocking is instantaneous in simulated
time, i.e. takes zero simulation time for all threads.

Complementary to the ROI-begin detection, which minimizes

serial effects during startup, we select the ROI-end time so as to

minimize serial effects at the end of the computation. If one

chooses the ROI-end as the point where all threads have exited, the

measurements become sensitive to tail effects – different threads

may finish at different times, and the parallelism degree is reduced

towards the end of the execution. To avoid this tail effect, we take

the ROI-end to be the time when the first worker threads exits. The

simulator detects this simply by detecting the first time the

benchmark exits from the function that is designated to be the

simulator’s barrier entry function, (which is typically the worker

thread entry function).

4. EVALUATION METHODOLOGY
The metric we use for performance is average number of

instructions-per-cycle (IPC). This metric is more appropriate than

the conventional total execution-time metric because the latter

allows meaningful comparison only when the size of the problem

is constant across different parallelism degrees. In contrast, IPC is

appropriate also when benchmarks may adjust the size of the

problem according to the parallelism degree, as some of the Parsec

benchmarks do. A weakness of the IPC metric is that it is not

appropriate when programs perform busy loops (e.g., spin-locks)

or speculative computations (e.g., transactional memory

programs), since it counts instructions that do not contribute to the

task [16]. This is not a problem with Parsec benchmarks, since

they do not perform speculative computations. The IPC is

calculated from the simulator’s performance counters – the total-
instructions counter and the execution time counter.

We use up to 1984 worker-threads. This upper limit is not inherent:

it is derived from a limitation of the Pin binary instrumentation

framework, which supports programs with up to 2048 threads.

Since most of the benchmarks have a control thread in addition to

the worker-threads, these benchmarks cannot be instantiated with

2048 worker-threads under Pin. 1984 was chosen because it is the
largest multiple of 64 that is smaller than 2048.

Not all benchmarks can create that many threads. Some

benchmarks have hard-coded limits on the number of threads; we

increased these limits to 2048. Some benchmarks impose

constraints on the number of worker-threads, e.g., requiring them

to be a power of two. Some do not run properly with thousands of

worker-threads. Some spawn multiple threads per worker-thread so

they hit the 2048 thread limit of the Pin binary instrumentation

framework with a lower number of threads-count parameter. We

indicate the relevant limitations in the results of every specific

benchmark.

4.1 Simulation environment
We used Parsec suite version 2.11, compiled with gcc 4.6.3 in gcc-

hooks mode. The freqmine benchmark does not support this mode
and therefore was not studied.

The input set used was simmedium.

The simulation was executed on an HP Proliant DL785 G5

machine, with 8 AMD Opteron™ Processor 8356 Quad-Core (total

of 32 cores) with 128GB RAM, running Linux Ubuntu 12.04 LTS,

64-bit.

4.2 Results presentation
For each benchmark, we show the graph of its performance

scalability and a graph of its dynamic behavior.

The performance is plotted (in IPC units) vs. the number of cores.

We include two curves – the actual performance (solid line) and

the theoretical maximum performance, i.e., if threads were never

blocked (dotted line). The latter is provided by equation (1).

CPIexe is the Cycles-Per-Instruction for the compute part of the

instruction, tm is the average memory operand access latency (in

cycles) rm is the average number of memory operands per
instruction and n is the number of cores (and threads).

 (1) 𝑷𝒆𝒓𝒇[𝑰𝑷𝑪] =
𝒏

𝑪𝑷𝑰𝒂𝒗𝒆𝒓𝒂𝒈𝒆
=

𝒏

𝑪𝑷𝑰𝒆𝒙𝒆+𝒓𝒎·𝒕𝒎

In our ideal parallel architecture model both CPIexe and tm are one

cycle. n is a parameter of a specific execution and the respective rm
is extracted from the simulator’s performance counters.

The dynamic behavior graph is plotted as the number of running

threads, (i.e., threads that are not blocked waiting for other threads)

in the vertical axis vs. the time (in cycles) in the horizontal axis.

This shows the pattern of inter-thread interaction over time. This

graph is different for executions with different numbers of threads.

We choose one representative graph for each benchmark, and
explain it.

5. SIMULATION RESULTS
We identify three families of benchmark parallelism behavior:

Linear scalability, scalability limited due to increasingly

dominating serial phase and scalability limited due to bounded

degree of parallelism.

5.1 Linear scalability
The fluidanimate benchmark has all worker threads running most

of the time across the range of parallelism that was profiled (up to

1024 cores) as shown in Figure 2. Still, there are phases of reduced

parallelism which make the performance less than ideal as shown

1 With three patches: Syntax error in open(), Deadlock in ferret

and Missing barrier in streamcluster.

in Figure 3. However, the speedup is linear, indicating that the

reduced parallelism part is proportional to the overall run time

rather than increasingly dominating it.

Figure 2: fluidanimate dynamics – good parallelsim

Figure 3: fluidanimate performance – linear speedup

The streamcluster benchmark does not have a serial phase as

shown in Figure 4. Also, the average number of running threads is

proportional to the number of worker threads hence it demonstrates

linear scalability as shown in Figure 5.

It should be noted that this benchmark uses an input data-set that is

proportional to the number of threads2. Therefore, it fits the

parallelism scalability model used in Gustafson Law [17].

Figure 4: streamcluster dynamics – average running threads
proportional to the number of worker-threads

Figure 5: streamcluster performance – linear speedup

The blackscholes benchmark is embarrassingly parallel, meaning it

operates on a large dataset and there is no dependency between the

operations on different part of the set. Therefore, its threads do not

communicate, hence never block, thus achieving perfect scalability

– the actual performance and the theoretical maximum

2 For this reason its simulation time is proportional to the number

of worker threads. For this reason this benchmark was profiled

only up 640 threads.

performance curves overlap (the graph is omitted due to space
considerations).

Figure 6: swaptions dynamics – bounded parallelism

Figure 7: swaptions performance – perfect up to 384 threads

The swaptions benchmark is essentially embarrassingly parallel

(see blackscholes in 5.1). However, it employs dynamic memory

allocation, which constitutes a shared-resource contention – the

heap. Therefore, it has limited parallelism (albeit quite high – 350

threads) as shown in Figure 6. Indeed it demonstrates perfect

scalability up to that limit and then it saturates at 384 thread (the

smallest simulated configuration with #threads >= 350) as shown

in Figure 7. Thus, we effectively measure the scalability of the

memory allocator rather than the benchmark itself. There is a

second performance plateau that requires further investigation.

5.2 Scalability limited by a serial phase

Figure 8: bodytrack dynamics – fixed serial phase

Figure 9: bodytrack performance – saturation at ~128 threads

The bodytrack benchmark has a serial phase which increasingly

dominates the execution time as shown in Figure 8. This is

classical Amdahl’s law effect. The performance saturates at ~128

threads as shown in Figure 9.

The facesim benchmark has a fixed serial phase which

increasingly dominates the execution time (the graph is omitted

due to space considerations). This benchmark was profiled only up

to 128 threads because there is no suitable input data set for a

larger number, so merely increasing the hard-coded limit of 128 is

insufficient. Hence the performance scalability graph in Figure 10

does not strictly saturate but still show quickly diminishing

performance increase with the increase in number of cores.

Figure 10: facesim performance – diminishing growth

The canneal benchmark has a serial phase that increasingly

dominates the execution time as shown in Figure 11. However, this

phase is almost linear in the number of threads (graphs omitted due

to space considerations). Indeed the performance scalability graph

in Figure 12 shows an effect that is worse than saturation – the

performance degrades significantly after peaking at ~256 threads.

Figure 11: canneal dynamics – increasingly long serial phase

Figure 12: canneal performance – peak at ~256 threads

Figure 13: raytrace dynamics – fixed bounded parallelism phase

Figure 14: raytrace performance – saturation at ~80 threads

The raytrace benchmark’s dynamic behavior is shown in Figure

13. It shows a leading phase with as much parallelism as there are

threads but a trailing phase with reduced parallelism that

increasingly dominates the execution time3. The performance

saturates at ~80 worker threads as shown in Figure 14.

5.3 Scalability limited by bounded parallelism

Figure 15: ferret dynamics – bounded parallelism

Figure 16: ferret performance – saturation at ~8 threads

The ferret benchmark fails to provide enough parallelism for more

than 12 threads to be running simultaneously, as shown in Figure

15. This means that any worker thread beyond that doesn’t provide

any performance increase. It should be noted that this benchmark

is implemented as a 4 stage pipeline, each stage having as much

worker threads as specified in the invocation. Hence, invocation

with 16 threads can theoretically get up to 64 running threads.

However, we see that no more than 12 threads are running at any

given time, which explains the performance saturation at 8 threads

as shown in Figure 16.

Figure 17: dedup dynamics – bounded parallelism

Figure 18: dedup performance – saturation at ~64 threads

The dedup benchmark fails to make all worker threads to run

simultaneously, as shown in Figure 17. This benchmark is

implemented as a 3 stage pipeline, each having as much worker

threads as specified in the invocation. Hence, invocation with 64

3 This is after the exclusion of thread termination tail effects as

described in 3.4.

threads can theoretically get up to 192 running threads. This

explains how we get to 100 running threads in an invocation with

64 worker threads. There are 3 different phases: parallelism limited

to ~100 threads, to ~60 threads and a tail. This explains the

performance saturation at 64 threads as shown in Figure 18.

Although the tail was supposed to be excluded as described in 3.4,

for this specific benchmark the tail exclusion method could not be

employed because worker threads of different pipeline stages exit

at different times, some very early. Thus for this benchmark the

ROI-end was taken to be the exit of the last worker thread rather
than the first exit.

Figure 19: vips dynamics – bounded parallelism

Figure 20: vips performance – saturates at 80 threads

The vips benchmark fails to get more than ~74 threads to run

simultaneously as shown in Figure 19. The performance saturates

at 80 threads (the smallest simulated configuration with #threads
>= 74) as shown in Figure 20.

Figure 21: x264 dynamics – bounded parallelism

The x264 benchmark fails to provide enough parallelism for all the

worker threads to be running simultaneously - no more than ~8

threads are running at any given time as shown in Figure 21. For

this reason the performance saturates at ~8 worker threads (graph
omitted due to space considerations).

6. CONCLUSIONS
In this paper, we used a perfect parallel architecture model to

capture the inherent parallelism characteristics of the Parsec

benchmarks. To this end, we developed a functionally-accurate

simulator that can scale to thousands of threads.

Our scalability study has identified three parallelism families:

1. Linear scalability - linearly scale up to many hundreds of

cores.

2. Parallelism scalability limited by a serial (or bounded

parallelism) phase that increasingly dominates the execution

time (Amdahl’s Law effect).

3. Parallelism scalability limited by bounded parallelism –

worker threads are never all active simultaneously.

We further presented dynamic behavior graphs, showing the

number of running threads over time, in order to capture the effect

of data dependency on the parallelism and to identify phases with

different parallelism characteristics. This can be used to guide
parallelism improvement of benchmarks.

REFERENCES
[1] C. Bienia and K. Li, “PARSEC 2.0: A New Benchmark Suite for

Chip-Multiprocessors”, In Proceedings of the 5th Annual Workshop
on Modeling, Benchmarking and Simulation, June 2009.

[2] Bryan, Paul D., et al. "Our many-core benchmarks do not use that

many cores." System 6 (2009): 8.

[3] Keramidas, Georgios, Nikolaos Strikos, and Stefanos Kaxiras.

"Multicore Cache Simulations Using Heterogeneous Computing on
General Purpose and Graphics Processors." Digital System Design

(DSD), 2011 14th Euromicro Conference on. IEEE, 2011.

[4] G.M. Amdahl, “Validity of the Single-Processor Approach to

Achieving Large-Scale Computing Capabilities,” Proc. Am.

Federation of Information Processing Societies Conf., AFIPS Press,
1967, pp. 483-485.

[5] Bhadauria, Major, Vincent M. Weaver, and Sally A. McKee.
"Understanding PARSEC performance on contemporary CMPs."

Workload Characterization, 2009. IISWC 2009. IEEE International

Symposium on. IEEE, 2009.

[6] Trivino, Francisco, et al. "Self-related traces: An alternative to full-

system simulation for nocs." High Performance Computing and

Simulation (HPCS), 2011 International Conference on. IEEE, 2011.

[7] Tan, Zhangxi, et al. "RAMP gold: an FPGA-based architecture

simulator for multiprocessors." Proceedings of the 47th Design
Automation Conference. ACM, 2010.

[8] Patel, Avadh, et al. "MARSS: A full system simulator for multicore
x86 CPUs." Proceedings of the 48th Design Automation Conference.

ACM, 2011.

[9] Moeng, Michael, Sangyeun Cho, and Rami Melhem. "Scalable Multi-

cache Simulation Using GPUs." Modeling, Analysis & Simulation of

Computer and Telecommunication Systems (MASCOTS), 2011 IEEE

19th International Symposium on. IEEE, 2011.

[10] Chang, Kuei-Chung, Ming Liao, and Chiu-Han Liao. "Improving

performance of multi-core NUCA coherent systems using NoC-
assisted mechanisms." The Journal of Supercomputing 62.3 (2012):

1318-1337.

[11] J. E. Miller et al, “Graphite: A distributed parallel simulator for
multicores”, HPCA-16, January 2010.

[12] Bhadauria, Major, Vincent M. Weaver, and Sally A. McKee.
"Understanding PARSEC performance on contemporary CMPs."

Workload Characterization, 2009. IISWC 2009. IEEE International
Symposium on. IEEE, 2009.

[13] Bienia, Christian, et al. "The PARSEC benchmark suite:

characterization and architectural implications." Proceedings of the
17th international conference on Parallel architectures and

compilation techniques. ACM, 2008.

[14] Luk, Chi-Keung, et al. "Pin: building customized program analysis
tools with dynamic instrumentation." ACM SIGPLAN Notices. Vol.

40. No. 6. ACM, 2005.

[15] Adve, Sarita V., and Kourosh Gharachorloo. "Shared memory

consistency models: A tutorial." computer 29.12 (1996): 66-76.

[16] Alameldeen, Alaa R., and David A. Wood. "IPC considered harmful

for multiprocessor workloads." IEEE Micro 26.4 (2006): 8-17.

[17] Gustafson, John L. "Reevaluating Amdahl's law." Communications of
the ACM 31.5 (1988): 532-533.

