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ABSTRACT 

The Parsec benchmark suite is widely used in evaluation of parallel 

architectures, both existing and novel, the latter through 

simulation. In particular, it is used for evaluation of highly parallel 

architectures. It is well known that parallelism bottlenecks occur 

both in the architecture, (e.g., shared-resource contention) and in 

the algorithm, (e.g., data-dependency). In this paper we study the 

latter, i.e., the inherent parallelism scalability and the dynamic 

behavior of the benchmark programs themselves, independently of 

the architecture.  

To this end, we present a new simulator that performs efficient, 

functionally accurate, simulation of a hypothetical ideal parallel 

architecture with no parallelism bottlenecks, where any measured 

parallelism limitation is necessarily due the benchmark itself. By 

applying this methodology to a continuum of simulated machines, 

ranging from a few processors to thousands of processors, we 

characterize the dynamic behavior and scalability of different 

benchmarks. We find that only a quarter of the Parsec benchmarks 

truly scale well to hundreds of processors. Moreover, somewhat 

surprisingly, we find the Amdahl effects are responsible for lack of 

scaling in only about half the non-scalable benchmarks. The rest 

are limited by their inability to produce sufficient work for all 

cores, and the others benchmarks’ scalability is limited by Amdahl 

effects. 

Categories and Subject Descriptors 

C.4 [Performance of Systems]: Performance attributes. 

General Terms 

Performance. 
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1. INTRODUCTION 
The Parsec benchmark suite [1] is widely used in parallel 

architectures research. While the benchmarks in this suite are 

implemented for mainstream operating systems (Linux and 

Microsoft Windows), the workloads are relevant to parallel 

architectures regardless of the OS. The primary goal of our work is 

to study the inherent behavior of multithreaded application 

programs on many-core machines, excluding effects of the 

operating system. 

Parallel benchmarks are compute-intensive, hence I/O and kernel 

space processing is not only unessential for performance 

measurements, it actually constitutes noise because of compute 

resource consumption by background processing (e.g., interrupts, 

daemons). Indeed the benchmarks are typically used in settings 

that attempt to prevent OS-level scheduling [2] and sometimes 

even filtering out kernel-space computation from the 

measurements [3]. Furthermore, the Parsec benchmarks define the 

concept of Region-Of-Interest (ROI), separating the compute part 

of the benchmark from setup and cleanup, which typically include 

environment-specific operations such as resource acquisitions, 

(e.g., memory, synchronization objects, thread creation) and I/O 

(for both input data sets and final results). 

In order to study the scalability of Parsec benchmarks, we develop 

a novel simulator that can execute Linux programs, and thus 

supports any Linux benchmark, but takes into account only user-

space code such that it is oblivious to the OS’ scheduler. This 

saves the need to strip down the OS to minimize background 

processing interference, and also allows us to simulate a larger 

number of cores than supported by the underlying OS. In addition, 

the simulator has special provisioning to restrict measurements to 

the ROI. 

We use our new simulator to measure how performance scales as 

the number of cores is increased. Moreover, we extract the 

dynamics of the number of active threads over the course of the 

execution. This illustrates phases in the benchmark’s life cycle, 

and highlights where parallelism bottlenecks lie within the code. 

We use an ideal parallel architecture model, one with no 

contention on shared resources, (e.g., caches, interconnect), a 

perfect core (1 cycle per instruction), and a perfect memory 

hierarchy (taking 1 cycle per memory access). This allows us to 

isolate the inherent performance properties of the benchmarks. 

We profile the Parsec benchmarks with a range of threads count 

and corresponding numbers of processors. Of the 12 benchmarks 

we study, we find that only three scale well to many hundreds of 

processors, whereas the rest peak between tens to a couple of 

hundreds of processors. Of the latter, four are limited by their 

inability to provide enough work for all available processors, and 

five are limited due to a classical Amdahl law effect [4]. 

2. RELATED WORK 
The Parsec benchmark suite is implemented on top of the Linux 

OS and is popular in Linux environments, running both on 

physical machines [5] and full-system simulators [6][7][8]. The 

benchmarks themselves, however, represent emerging parallel 

workloads, and are not inherently dependent on Linux. One 

technique to profile the benchmarks on a novel architecture or on a 

many-core architecture not supported by Linux is to collect traces 

in a Linux environment with the benchmark running as many 

threads as there are cores in the target architecture [9][10] and 

using these in a trace-driven simulation. However, this technique 

loses timing-dependent functional effects, which may lead to 

inaccurate performance prediction. In contrast, our simulator 

employs a feedback loop between the trace collection and the 

trace-driven timing simulation for accurate performance modeling.  

A similar mechanism was used in the Graphite simulator [11]. Like 

our simulator, Graphite also collects traces between inter-thread 
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interaction points.  However, Graphite’s main requirement is to 

minimize single simulation latency, to which end it sacrifices the 

accuracy of inter-thread dependency effects, e.g., by employing lax 

synchronization and analytical modeling. In our simulator the 

tradeoff is the opposite – our main requirement is accurate 

simulation of inter-dependency effects and we sacrifice simulation 

latency for that. Specifically, our simulations can exploit only a 

single physical core, as it runs one thread at a time. The high 

latency of a single simulation is mitigated by the fact that studies 

typically involve many independent simulations of different data 

points and with different parameters, which can run simultaneously 

on numerous physical cores. 

The general characteristics of the Parsec suite on contemporary 

architectures were studied in earlier work [12][13]. The software’s 

scalability assuming ideal, perfect hardware architecture was 

studied by standard system simulation for up to 16 cores [2]. In 

this paper we push the envelope much further – we evaluate the 

workload on architectures including even thousands of processors. 

We do so by leveraging our simulator’s scalability and efficiency, 

which allow it to simulate architecture with more cores than 

supported by the operating system. 

3. THE SIMULATOR 
Our simulator’s architecture resembles that of Graphite [11]. It 

employs binary instrumentation to observe the dynamic instruction 

stream, whereas the functional execution is performed by the 

underlying physical processor. Like Graphite, it uses the Pin binary 

instrumentation tool from Intel [14] and the simulator is 

implemented as a Pintool. This means that only the user-space 
code of the benchmark is simulated. 

3.1 Timing simulation 
To maintain the timing effect in the functional execution, (and thus 

achieve the effect of an execution-driven simulation), the 

instructions are scheduled to the physical processor in the order 

imposed by the timing model of the simulated architecture. For 

example, when two threads contend on changing the same memory 

location (typically using atomic read-modify-write instructions), 

the one that would execute first according to the timing model is 

scheduled first to the physical processor. We control the functional 

execution scheduling through per-thread semaphores. To delay 

functional execution of a thread, the instrumentation code 

(simulator’s code) blocks on the respective thread’s semaphore. 

When the timing simulation determines the thread whose next 

instruction should execute, it signals its semaphore. This unblocks 

the thread, allowing its next instruction to functionally execute. 

This means that the Operating system’s scheduler and other 

processes in the system do not affect the timing simulation, thus 

eliminating potential performance measurement noise. 

3.2 Batching functional execution 
Thread blocking and signaling incurs significant runtime overhead. 

Therefore it is critical for simulation performance to minimize 

such synchronization. A key observation towards reducing this 

overhead is that in order to preserve the effect of simulated timing 

on the computation, it is not necessary to functionally execute 

instructions in the global order imposed by the timing model – it 

suffices to execute them in dependency order. Inter-thread 

instructions dependency occurs only when there are shared 

operands. With Linux supporting processors with relaxed memory 

consistency models [15], sharing operands requires the use of 

memory fences to make visibility order guarantees. Hence, it can 

be assumed that memory operands are not shared unless the 

sharing threads delineate these accesses explicitly using fence 

instructions. It therefore suffices to execute only fence instructions 
in the order imposed by the timing model.  

This observation allows us to functionally execute multiple 

instructions of a single thread continuously without blocking as 

long as no memory fence is encountered. Once a memory fence 

instruction occurs, its functional execution is delayed until all 

memory fence instructions in other threads that precede it 

according to the timing model have been functionally executed. 

This way subsequent instructions see the results of other threads’ 
instructions that precede them according to the timing model.  

An example functional execution is illustrated in Figure 1. It 

shows the instruction streams of three threads: T1, T2 and T3. The 

small black rectangles denote memory fence instructions. Figure 

1(a) shows the execution timing in the simulated architecture. The 

arrows show dependency order, from instructions that are ordered 

earlier to ones that are ordered later. Figure 1(b) shows a 

functionally equivalent execution: memory fences are executed in 

the same order as in Figure 1(a), preserving inter-thread 

instructions ordering. 

 

(a) Timing model on the simulated architecture 

 

(b) Valid functional execution of (a) under a weak memory 

consistency model 

Figure 1: Functional execution scheduling 

The simulator exploits this degree of freedom in the functional 

execution order, and batches the execution of consecutive 

instructions preceding a memory fence while collecting traces. It 

then executes the timing model simulation on the traces to 

determine the thread that first executes its next instruction (a 

memory fence). This thread is then allowed to execute and collect 

a new trace and so on. The simulation process thus alternates 

between two phases: trace collection from a single thread until a 
fence is encountered, and timing model simulation. 

It should be emphasized that this functional execution batching is 

just a simulation runtime optimization. It has no effect on the 

timing simulation because the simulated architecture has strong 

memory consistent model and no pipeline or out-of-order 

execution, hence a memory fence is equivalent to NOP instruction. 

3.3 Thread blocking 
Since kernel-space code is not simulated, the simulator needs to 

know when a thread is blocked inside the kernel in order to 
exclude it from performance counters and from scheduling. 

We use a simple scheme: every syscall is assumed to be blocking. 

If it is not blocking, it will return very quickly in terms of 

simulation time, because the kernel is not simulated. If it is indeed 

blocking, it will return when another thread performs the 
unblocking operation, which occurs at the correct simulation time. 



3.4 Region-Of-Interest (ROI) Detection 
The Parsec benchmarks mark the beginning and end of the ROI by 

calling functions __parsec_roi_begin and 

__parsec_roi_end, respectively. The former is called just 

before spawning the worker threads, after setting up the data set to 

operate on. The latter is called just after waiting for all threads to 

exit and any output data is generated after it. It would have been 

simple to detect the calls to these functions in the simulator and 

restrict the measurement accordingly. However, with hundreds and 

thousands of threads, just the creation of the threads and waiting 

for their exit, which occur inside the ROI, may affect the 

performance results. Indeed, two benchmarks (blackscholes and 

raytrace) use a pthreads barrier at the beginning of the worker 

threads to ensure that worker threads do not make progress before 

all are created. However, the pthreads barrier implementation, 

whose user-space part of the code is included in the simulation, has 

the last thread that enters the barrier unblock all other threads in a 

loop. This is a serial operation whose length is proportional to the 

number of threads, which has a significant impact on performance 

results. 

We solve this predicament by introducing the concept of a 

simulator-level barrier. The simulator can be given a name of a 

function in the simulated program that when entered is considered 

as a wait on the simulator’s barrier, meaning that the thread gets 

blocked by the simulator itself, i.e., it is excluded from simulation 

scheduling. Only when the designated function is entered the 

specified number of times (the expected number of worker threads) 

all are unblocked and it is taken as the ROI-begin mark. Since this 

is done in the simulator, unblocking is instantaneous in simulated 
time, i.e. takes zero simulation time for all threads. 

Complementary to the ROI-begin detection, which minimizes 

serial effects during startup, we select the ROI-end time so as to 

minimize serial effects at the end of the computation. If one 

chooses the ROI-end as the point where all threads have exited, the 

measurements become sensitive to tail effects – different threads 

may finish at different times, and the parallelism degree is reduced 

towards the end of the execution. To avoid this tail effect, we take 

the ROI-end to be the time when the first worker threads exits. The 

simulator detects this simply by detecting the first time the 

benchmark exits from the function that is designated to be the 

simulator’s barrier entry function, (which is typically the worker 

thread entry function).   

4. EVALUATION METHODOLOGY 
The metric we use for performance is average number of 

instructions-per-cycle (IPC). This metric is more appropriate than 

the conventional total execution-time metric because the latter 

allows meaningful comparison only when the size of the problem 

is constant across different parallelism degrees. In contrast, IPC is 

appropriate also when benchmarks may adjust the size of the 

problem according to the parallelism degree, as some of the Parsec 

benchmarks do. A weakness of the IPC metric is that it is not 

appropriate when programs perform busy loops (e.g., spin-locks) 

or speculative computations (e.g., transactional memory 

programs), since it counts instructions that do not contribute to the 

task [16]. This is not a problem with Parsec benchmarks, since 

they do not perform speculative computations. The IPC is 

calculated from the simulator’s performance counters – the total-
instructions counter and the execution time counter. 

We use up to 1984 worker-threads. This upper limit is not inherent: 

it is derived from a limitation of the Pin binary instrumentation 

framework, which supports programs with up to 2048 threads. 

Since most of the benchmarks have a control thread in addition to 

the worker-threads, these benchmarks cannot be instantiated with 

2048 worker-threads under Pin. 1984 was chosen because it is the 
largest multiple of 64 that is smaller than 2048.  

Not all benchmarks can create that many threads. Some 

benchmarks have hard-coded limits on the number of threads; we 

increased these limits to 2048. Some benchmarks impose 

constraints on the number of worker-threads, e.g., requiring them 

to be a power of two. Some do not run properly with thousands of 

worker-threads. Some spawn multiple threads per worker-thread so 

they hit the 2048 thread limit of the Pin binary instrumentation 

framework with a lower number of threads-count parameter. We 

indicate the relevant limitations in the results of every specific 

benchmark. 

4.1 Simulation environment 
We used Parsec suite version 2.11, compiled with gcc 4.6.3 in gcc-

hooks mode. The freqmine benchmark does not support this mode 
and therefore was not studied. 

The input set used was simmedium. 

The simulation was executed on an HP Proliant DL785 G5 

machine, with 8 AMD Opteron™ Processor 8356 Quad-Core (total 

of 32 cores) with 128GB RAM, running Linux Ubuntu 12.04 LTS, 

64-bit. 

4.2 Results presentation 
For each benchmark, we show the graph of its performance 

scalability and a graph of its dynamic behavior. 

The performance is plotted (in IPC units) vs. the number of cores. 

We include two curves – the actual performance (solid line) and 

the theoretical maximum performance, i.e., if threads were never 

blocked (dotted line). The latter is provided by equation (1). 

CPIexe is the Cycles-Per-Instruction for the compute part of the 

instruction, tm is the average memory operand access latency (in 

cycles) rm is the average number of memory operands per 
instruction and n is the number of cores (and threads). 

 (1) 𝑷𝒆𝒓𝒇[𝑰𝑷𝑪] =
𝒏

𝑪𝑷𝑰𝒂𝒗𝒆𝒓𝒂𝒈𝒆
=

𝒏

𝑪𝑷𝑰𝒆𝒙𝒆+𝒓𝒎·𝒕𝒎
 

In our ideal parallel architecture model both CPIexe and tm are one 

cycle. n is a parameter of a specific execution and the respective rm 
is extracted from the simulator’s performance counters. 

The dynamic behavior graph is plotted as the number of running 

threads, (i.e., threads that are not blocked waiting for other threads) 

in the vertical axis vs. the time (in cycles) in the horizontal axis. 

This shows the pattern of inter-thread interaction over time. This 

graph is different for executions with different numbers of threads. 

We choose one representative graph for each benchmark, and 
explain it. 

5. SIMULATION RESULTS 
We identify three families of benchmark parallelism behavior: 

Linear scalability, scalability limited due to increasingly 

dominating serial phase and scalability limited due to bounded 

degree of parallelism. 

5.1 Linear scalability 
The fluidanimate benchmark has all worker threads running most 

of the time across the range of parallelism that was profiled (up to 

1024 cores) as shown in Figure 2. Still, there are phases of reduced 

parallelism which make the performance less than ideal as shown 

                                                                 

1 With three patches: Syntax error in open(), Deadlock in ferret 

and Missing barrier in streamcluster. 



in Figure 3. However, the speedup is linear, indicating that the 

reduced parallelism part is proportional to the overall run time 

rather than increasingly dominating it. 

 
Figure 2: fluidanimate dynamics – good parallelsim 

 
Figure 3: fluidanimate performance – linear speedup 

The streamcluster benchmark does not have a serial phase as 

shown in Figure 4. Also, the average number of running threads is 

proportional to the number of worker threads hence it demonstrates 

linear scalability as shown in Figure 5. 

It should be noted that this benchmark uses an input data-set that is 

proportional to the number of threads2. Therefore, it fits the 

parallelism scalability model used in Gustafson Law [17]. 

 

Figure 4: streamcluster dynamics – average running threads 
proportional to the number of worker-threads 

 
Figure 5: streamcluster performance – linear speedup 

The blackscholes benchmark is embarrassingly parallel, meaning it 

operates on a large dataset and there is no dependency between the 

operations on different part of the set. Therefore, its threads do not 

communicate, hence never block, thus achieving perfect scalability 

– the actual performance and the theoretical maximum 

                                                                 

2 For this reason its simulation time is proportional to the number 

of worker threads. For this reason this benchmark was profiled 

only up 640 threads.  

performance curves overlap (the graph is omitted due to space 
considerations). 

 
Figure 6: swaptions dynamics – bounded parallelism 

 
Figure 7: swaptions performance – perfect up to 384 threads 

The swaptions benchmark is essentially embarrassingly parallel 

(see blackscholes in 5.1). However, it employs dynamic memory 

allocation, which constitutes a shared-resource contention – the 

heap. Therefore, it has limited parallelism (albeit quite high – 350 

threads) as shown in Figure 6. Indeed it demonstrates perfect 

scalability up to that limit and then it saturates at 384 thread (the 

smallest simulated configuration with #threads >= 350) as shown 

in Figure 7. Thus, we effectively measure the scalability of the 

memory allocator rather than the benchmark itself. There is a 

second performance plateau that requires further investigation. 

5.2 Scalability limited by a serial phase 

 
Figure 8: bodytrack dynamics – fixed serial phase 

 
Figure 9: bodytrack performance – saturation at ~128 threads 

The bodytrack benchmark has a serial phase which increasingly 

dominates the execution time as shown in Figure 8. This is 

classical Amdahl’s law effect. The performance saturates at ~128 

threads as shown in Figure 9. 

The facesim benchmark has a fixed serial phase which 

increasingly dominates the execution time (the graph is omitted 

due to space considerations). This benchmark was profiled only up 

to 128 threads because there is no suitable input data set for a 

larger number, so merely increasing the hard-coded limit of 128 is 



insufficient. Hence the performance scalability graph in Figure 10 

does not strictly saturate but still show quickly diminishing 

performance increase with the increase in number of cores. 

 
Figure 10: facesim performance – diminishing growth 

The canneal benchmark has a serial phase that increasingly 

dominates the execution time as shown in Figure 11. However, this 

phase is almost linear in the number of threads (graphs omitted due 

to space considerations). Indeed the performance scalability graph 

in Figure 12 shows an effect that is worse than saturation – the 

performance degrades significantly after peaking at ~256 threads. 

 
Figure 11: canneal dynamics – increasingly long serial phase 

 
Figure 12: canneal performance – peak at ~256 threads 

 
Figure 13: raytrace dynamics – fixed bounded parallelism phase 

 
Figure 14: raytrace performance – saturation at ~80 threads 

The raytrace benchmark’s dynamic behavior is shown in Figure 

13. It shows a leading phase with as much parallelism as there are 

threads but a trailing phase with reduced parallelism that 

increasingly dominates the execution time3. The performance 

saturates at ~80 worker threads as shown in Figure 14. 

5.3 Scalability limited by bounded parallelism 

 
Figure 15: ferret dynamics – bounded parallelism 

 
Figure 16: ferret performance – saturation at ~8 threads 

The ferret benchmark fails to provide enough parallelism for more 

than 12 threads to be running simultaneously, as shown in Figure 

15. This means that any worker thread beyond that doesn’t provide 

any performance increase. It should be noted that this benchmark 

is implemented as a 4 stage pipeline, each stage having as much 

worker threads as specified in the invocation. Hence, invocation 

with 16 threads can theoretically get up to 64 running threads. 

However, we see that no more than 12 threads are running at any 

given time, which explains the performance saturation at 8 threads 

as shown in Figure 16. 

 
Figure 17: dedup dynamics – bounded parallelism 

 
Figure 18: dedup performance – saturation at ~64 threads 

The dedup benchmark fails to make all worker threads to run 

simultaneously, as shown in Figure 17. This benchmark is 

implemented as a 3 stage pipeline, each having as much worker 

threads as specified in the invocation. Hence, invocation with 64 

                                                                 

3 This is after the exclusion of thread termination tail effects as 

described in 3.4. 



threads can theoretically get up to 192 running threads. This 

explains how we get to 100 running threads in an invocation with 

64 worker threads. There are 3 different phases: parallelism limited 

to ~100 threads, to ~60 threads and a tail. This explains the 

performance saturation at 64 threads as shown in Figure 18. 

Although the tail was supposed to be excluded as described in 3.4, 

for this specific benchmark the tail exclusion method could not be 

employed because worker threads of different pipeline stages exit 

at different times, some very early. Thus for this benchmark the 

ROI-end was taken to be the exit of the last worker thread rather 
than the first exit. 

 
Figure 19: vips dynamics – bounded parallelism 

 
Figure 20: vips performance – saturates at 80 threads 

The vips benchmark fails to get more than ~74 threads to run 

simultaneously as shown in Figure 19. The performance saturates 

at 80 threads (the smallest simulated configuration with #threads 
>= 74) as shown in Figure 20. 

 
Figure 21: x264 dynamics – bounded parallelism 

The x264 benchmark fails to provide enough parallelism for all the 

worker threads to be running simultaneously - no more than ~8 

threads are running at any given time as shown in Figure 21.  For 

this reason the performance saturates at ~8 worker threads (graph 
omitted due to space considerations). 

6. CONCLUSIONS 
In this paper, we used a perfect parallel architecture model to 

capture the inherent parallelism characteristics of the Parsec 

benchmarks. To this end, we developed a functionally-accurate 

simulator that can scale to thousands of threads. 

Our scalability study has identified three parallelism families: 

1. Linear scalability - linearly scale up to many hundreds of 

cores. 

2. Parallelism scalability limited by a serial (or bounded 

parallelism) phase that increasingly dominates the execution 

time (Amdahl’s Law effect). 

3. Parallelism scalability limited by bounded parallelism – 

worker threads are never all active simultaneously. 

We further presented dynamic behavior graphs, showing the 

number of running threads over time, in order to capture the effect 

of data dependency on the parallelism and to identify phases with 

different parallelism characteristics. This can be used to guide 
parallelism improvement of benchmarks. 
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