
Towards Operating System Support for
Heterogeneous-ISA Platforms

Antonio Barbalace, Alastair Murray, Rob Lyerly, Binoy Ravindran
Dept. of Electrical and Computer Engineering

Virginia Tech, Virginia, USA
{antoniob, alastair, rlyerly, binoy}@vt.edu

ABSTRACT
Given an emerging trend towards OS-capable heterogeneous-
ISA multi-core processors, we address the problem of how
to redesign classic symmetric multi-processing (SMP) oper-
ating systems (OS) to exploit this hardware. We propose
an OS design that consists of multiple kernels, each one
compiled for, and run on, a specific ISA of the heteroge-
neous platform. These kernels collaboratively maintain a
distributed OS state, share hardware resources and transfer
their workload. Following these design principles, we iden-
tify a set of features that should be implemented in SMP
OSs to realize our OS design.

We deploy these features in Linux to produce a homoge-
neous prototype of our OS design. We evaluate this proto-
type by partitioning a multi-processor machine to run multi-
ple kernels. We compare against traditional Linux to demon-
strate that our redesign does not hinder performance.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design

Keywords
Many-core, Heterogeneous, Operating-Systems, Linux

1. INTRODUCTION
The trend towards parallel hardware in computer systems

is well established. This trend covers not only massively-
parallel accelerators such as GPUs, but also general-purpose
OS-capable many-core processors. More recently, a second
trend has begun to develop where OS-capable multi-core
processors are also becoming more diverse and heteroge-
neous. While classic symmetric multi-processing (SMP) op-
erating systems (OS) have been able to scale to many-core
hardware with some re-design [3], further re-structuring will
be required to support more diverse hardware. This paper
proposes such a re-structuring and demonstrates its validity
with an initial implementation based on the Linux kernel.

1.1 Motivation
The parallelism trend has progressed far enough that in

many contexts, single-core processors are rare; multi-core
processors have become standard hardware. Different levels
of parallelism in hardware designs result in different per-
formance profiles. Multi-core processors have a few large
processing units, whereas many-core processors are made
up from many small processing units. This in turn means
that multi-core processors have high per-core performance

and moderate-throughput but high-power demands, while
many-core processors have lower per-core performance but
high-throughput with low-power demands (but only on par-
allel workloads).

Many-core processors such as the Intel Xeon-Phi (60 pro-
cessors, 240 threads) or the Tilera TILE-Gx72 (72 proces-
sors) are commercially available; both have complete oper-
ating system support and can run Linux. However, in an
attempt to provide good performance in a large range of sit-
uations, the latest generation of processor designs integrate
different types of processing units onto a single die. The In-
tel Sandy Bridge processor has up to six CPU cores and up
to twelve GPU cores. ARM has developed the big.LITTLE
architecture, which combines a high-performance four-core
processor with a low-power four-core processor in order to
handle high-performance workloads without wasting power
on low-demand workloads.

While increasing the diversity of processors enables better
performance (e.g. scheduling applications for performance
or power, load balancing across processors, etc.), modern
systems only loosely integrate OS-capable hardware by con-
currently executing separate OSs within the same system.
Without a single namespace and coherent system state, ap-
plications must be rewritten to explicitly take advantage of
the performance benefits of multiple-ISA systems. However,
this breaks the classic OS/process abstraction model and
prevents the OS from providing many services (e.g. load bal-
ancing and process migration for device locality). Clearly,
an OS that provides a single system image (SSI) and trans-
parently handles hardware diversity has many benefits.

These trends towards diversity and parallelism, and the
lack of complete OS support for such systems, inform our de-
sign for a messaging-based multiple kernel OS that supports
heterogeneous-ISA architectures, while hiding hardware di-
versity from applications.

1.2 Contribution
In this paper we propose a redesign of the traditional SMP

OS in order to support future heterogeneous hardware. To
demonstrate its feasibility we describe a prototype that par-
titions an x86 multi-core machine into either one kernel per
core or one per multi-core processor. We apply this hetero-
geneous design to Linux to take advantage of the mature
ecosystem that has developed around traditional SMP op-
erating systems. Our contributions are:

• We introduce inter-kernel communication to maintain
a global OS state amongst different kernel instances
that may be running on different ISAs.

• We propose a transparently managed client/server mo-
del for allowing inter-kernel access to local resources.

• In our prototype kernel, we model a minimum set of
subsystems that must be kept coherent in order for
a heterogeneous OS to work. From this analysis we
identify a set of features that must be supported by
the OS.

• We deploy such features in Linux, and we evaluate
their functionality on homogeneous-ISA as a working
prototype of our model. Our prototype is called Pop-
corn Linux, and the sources are publicly available.

2. RELATED WORK
To the best of our knowledge we are the first to present a

redesign of Linux to accommodate heterogeneous-ISA hard-
ware, but there is previous work in both general heteroge-
neous and multiple kernel operating systems.

Li et al. [8] deploy a Linux design for overlapping-ISA het-
erogeneous architectures. In their model cores share a large
set of common instructions and registers with identical en-
coding and semantics; we target a much broader hardware
model. We know of three separate Linux-based efforts that
have implemented a partitioned design to target homoge-
neous x86 hardware: SHIMOS [6], Twin Linux [7] and Linux
Mint [10]. The purpose of these works, however, was not to
address heterogeneous hardware. Further, Twin Linux only
supports shared-memory inter-kernel communication, while
Linux Mint and SHIMOS do not support any method of
communication at all.

Most of the research in the area of heterogeneous OSs in-
volves the creation of new kernels. The disadvantage of this
approach is the loss of support and compatibility that Linux
provides. The approach that is the most similar to our own
is the Barrelfish OS [2]. This is the multikernel design that
runs a microkernel per-core. Barrelfish uses message passing
to keep global system state coherent, in a manner resembling
a closely-coupled distributed system. A heterogeneous ver-
sion of the Barrelfish model has also been proposed [12].
Although we use a similar message passing design, we do
not use RPC; instead, we use task-to-task messaging. Fur-
thermore our primary goal is to handle diversity. The Helios
OS [9] is entirely designed around heterogeneity, also using
a multikernel-like design on .NET. In contrast to our design,
however, kernels are not peers; instead there are designated
coordinator and satellite kernels.

Finally, kernel-level scheduling approaches to support over-
lapping-ISA heterogeneous architectures have been proposed
for x86 [13], where an application can run on any processor
but will experience different performance per processor.

3. OS DESIGN PRINCIPLES
The traditional SMP OS cannot deal with emerging het-

erogeneous-ISA processors, but these monolithic OSs are
very widely used and have an enormous level of software
support. A microkernel design may seem a more natural fit
when constructing a single OS out of multiple kernels (i.e.
the multikernel), but we prefer to follow a more traditional
design so as to maintain as much compatibility with existing
software as is possible. We attempt to provide a single sys-
tem image so that applications are not aware that they may
be running across multiple kernels, but the OS exports the
system topology so that applications may choose an optimal

ISA A ISA B ISA C

Core 0 Core 1 Core 2 Core 3 Core 0 Core 1

Core 1Core 0

Dev X

Core 2

Dev WDev ZDev Y

Global Accessible Memory (Mem G)

Local Mem A Local Mem B

Linux Kernel B Linux Kernel CLinux Kernel A

Single System Image

Application

Figure 1: Heterogeneous-ISA hardware model.

mapping. Of course, providing this single system image re-
quires several changes and additions to the monolithic kernel
model – these changes are described below.

A heterogeneous OS consists of multiple kernels that are
compiled for different ISAs. While multiple kernel instances
run together on the various ISAs, their state must be kept
coherent in order to provide applications with the view of
a single OS; this is accomplished by partially replicating
global OS state. We assume that not every kernel object’s
state must be replicated on each kernel, but that only the
kernels that are accessing a specific replicated object must
know about any state changes (note that an object can be
a task, an address space, etc.). This allows us to reduce
inter-kernel communication and synchronization.

3.1 Hardware Model
In the following, we assume a hardware model in which

processors of different ISAs share access to a global, eventu-
ally consistent, memory (Mem G in Figure 1). We also allow
hardware message passing. Computational units of a single
ISA could have exclusive access to a memory area (Mem A
and Mem B) and across ISAs the same memory area can
be mapped at different physical address ranges. A similar
model holds for accessing devices and peripherals that are
mainly memory-mapped. Some devices, like Dev X and Dev
Y, can be directly accessed by any processor. Others, like
Dev Z or Dev W, cannot. The schema in Figure 1 is repre-
sentative of the hardware model that our heterogeneous OS
design could support.

In the introduction we described current market trends
and future hardware possibilities, but Figure 1 is repre-
sentative of present-day hardware. Limitations of current
hardware, however, introduce the caveat that heterogeneous
memory accesses, such as ISA C accessing Mem G, are not
cache coherent. It represents a loosely-coupled heteroge-
neous system connected via the PCIe bus, e.g. a multi-core
x86 machine (ISA C) with Tilera TILE-Gx72 (ISA B) and
Intel Xeon-Phi (ISA A) boards.

3.2 Peer Kernels
In a setup where different kernels coexist, a relationship

must be defined between them. In virtual machine environ-
ments, for example, the OS running on the bare hardware is
called the host OS, and OSs running on the virtual machines
are called guest OSs. The relationship is hierarchical: guest

OSs are nested into the host OS, which provides services to
them. In our approach, all kernel instances are peers that
reside on processors of different ISAs. In a peer relationship,
kernels do not necessarily depend on the others for services;
from any kernel, it will be possible to boot any other kernel,
run any service, and control any of the hardware devices, if
they are physically accessible from the processing units on
which a kernel is running.

Physical hardware design will, however, imply some level
of hierarchy in some circumstances. For example with an x86
motherboard and an OS-capable PCIe device, it is unlikely
that the PCIe device will be able to boot kernels on x86 cpus.
As a consequence of the boot process of the multi-processor
x86 architecture the kernel is launched by the BIOS/boot
loader on a bootstrap processor. After some basic initializa-
tion, it sequentially starts all the other CPUs in the system
(called application processors). In the hardware model de-
scribed, we foresee that a single bootstrap processor, which
belongs to an ISA such as x86, will be booted first, and it
will be responsible for booting all other processors. The first
kernel to boot on a machine is the Primary kernel, and all
others are called Secondary kernels.

Required Features. Kernels must be able to boot other
kernels and to provide any service. In order for different
kernel instances to be peers, they must be able to com-
municate. Communication enables coordination and sys-
tem state consistency across peer kernels such that all peers
form a single operating system. As shown in our hardware
model, within a heterogeneous ISA platform different pro-
cessors can potentially be connected via different buses. The
communication layer should be flexible enough to exploit the
optimal method of providing fast and reliable communica-
tion between kernels on the given hardware, including shared
memory and hardware message passing.

3.3 Resource Sharing
In a heterogeneous platform, computational units, mem-

ories, accelerators, and peripherals of many types may be
available. In a heterogeneous OS resources are allocated per
kernel instance. Computational units do not always have di-
rect access to all hardware resources; therefore, each kernel
may not be able to directly access every device in a platform.
A heterogeneous OS should be able to hide this diversity and
allow each kernel access every resource present in a platform.
When hiding is too expensive, the application or part of it
should be migrated closer to the resource (see Section 3.4).

Global Resources. Globally physical accessible resources
are hardware resources that can be seen by each computa-
tional unit, like Mem G, Dev X, and Dev Y in Figure 1. A
global resource, or part of it, can be accessed concurrently
by different kernels; for example, a chunk of a global shared
memory (Mem G) can be used for communication or syn-
chronization by all the kernels. Otherwise, globally accessi-
ble resources should be partitioned amongst kernels. In the
process of selecting which kernel instance owns which sub-
set of global resources, different criteria should be evaluated
(e.g. proximity of a resource to a computational unit).

Globally accessible resources may not be partitionable to
all kernel instances if they are limited in number (like Dev
X and Dev Y). In this case, to provide access to a single
indivisible resource amongst different kernels, a resource can
be time-shared between kernels, or the kernel that owns the
resource can act as a server to let the others access that

resource. In the time sharing case, if a resource is initially
assigned to a kernel, its ownership will be changed at run-
time and all the kernels will be notified. If a single kernel
owns the device, the other kernels interact with the device by
communicating with the owner kernel that acts as a server
or proxy to that device.

Local Resources. Local resources are hardware resources
that are not physically accessible by all computational units,
but only by a subset of them. In Figure 1 Mem A, Mem B,
Dev Z, and Dev W are only directly accessible by processors
of a specific ISA. The only way to deal with such resources
is to use the client/server model, where a server kernel can
directly access the resource and provide the services to all
the other kernels.

Required Features. A kernel must be able to initialize
all devices local to that ISA, and make them accessible by
proxy. To enable sharing of global resources, inter-kernel
communication is again required to allow coordination be-
tween kernels requesting the same resource. A replicated
state of the current allocation of each hardware resource
must be maintained across kernels, and every kernel must
know if access to a particular resource is proxied by another
kernel. From an application point of view, resource access
must be transparently managed by the OS, and the appli-
cation should see a consistent resource namespace on each
kernel instance.

3.4 Load Sharing
As in cluster environments, different kernels should share

their workload. Note that remote process migration across
heterogeneous ISAs is out of the scope of this article and is
not implemented in our homogeneous prototype. We intend
that cross-ISA execution migration would work in a manner
similar to that proposed by DeVuyst et al. [5]. They assume
a single OS running on different cores and use a combination
of multiple-compilation and dynamic binary translation to
allow efficient heterogeneous-ISA execution migration.

The advantage of remotely creating and migrating pro-
cesses and threads is not only to provide load balancing
across ISAs, but also to realize power saving policies, to
improve latency when accessing resources local to a particu-
lar kernel, and to exploit the faster execution of a particular
piece of code on a specific ISA.

Required Features. To migrate applications across ker-
nels, a single system image is required in order for them to
execute correctly. A single and consistent view of the file-
system must be provided as well. For migrated applications
to communicate or synchronize with applications resident
on other kernels, inter-kernel inter-process communication
primitives should be provided. This in turn requires func-
tionalities, like a single process identification space, to be
maintained across kernels. At each application’s migration,
interested kernels must be informed. Inter-kernel scheduling
must exploit inter-kernel communication and must happen
collaboratively amongst different kernels.

4. X86 IMPLEMENTATION
We deployed the presented design in Linux 3.2.14, modi-

fying 159 files while adding a total of ∼ 29k lines. We tested
its functionality on homogeneous x86 multi-core hardware,
but to demonstrate heterogeneous support we treat the ho-
mogeneous hardware as if it were heterogeneous. Every core,
or group of cores, runs a single-ISA kernel.

4.1 Boot Process
The kexec software is normally used to reboot a machine

into a new kernel from an already-running kernel. We mod-
ified both the kexec application itself and the backend code
within the kernel to load a new kernel instance that will
run in parallel on a different partition of hardware resources
(∼ 4k lines). Following our design, the primary kernel is
loaded on some combination of processors that, by design,
includes the bootstrap processor. Each secondary kernel is
loaded on some group of application processors that are not
in use by any other kernel instance. Processors are not enu-
merated as in Linux but are given globally unique IDs that
make them identifiable across all kernel instances.

In order to boot each secondary kernel instance, we have
created a modified version of the trampoline1 used to boot
application processors in SMP Linux. We rewrote the kernel
bootup code in order to boot kernels at locations throughout
the physical address space2 (we currently support only the
x86-64 architecture).

4.2 Shared Memory Handling
We divided the shared memory into chunks, some of which

are private to a single kernel and some of which are shared
between kernels. Private chunks, or sub-chunks, can be
shared after boot up with private shared mappings.

Linux already offers functionalities to start a kernel with
a reduced view of the available physical memory. We use
such functionalities to statically allocate private chunks to
each kernel. In order to provide for runtime private shared
mappings we borrow remap_pfn_range and ioremap_cache.
These mappings are managed by a memory service running
on each kernel.

4.3 Device Drivers
A redesign of the device initialization was necessary to

allow a secondary Linux kernel to boot. We implemented a
resource-masking feature to initialize only the devices owned
by a kernel, and we also had to check device drivers for their
hardware discovery code. User-space drivers must always
run on the kernel local to their device.

The I/O APIC, the programmable interrupt controller on
the x86 architecture, is a tangible example of a global re-
source that must be accessed exclusively by one kernel at a
time. We developed a server driver to proxy accesses to the
APIC from other kernels. Currently, the I/O APIC driver
is loaded exclusively on the primary kernel, and any other
kernels with a device that requires interrupts in their re-
source partition will communicate with the primary kernel
in order to operate with the I/O APIC. Conversely, the CD-
ROM device is an example of time-sharable device. E.g., a
“CD Burner” application must have exclusive access to the
CD-ROM device for the time it takes to write a disc.

4.4 Kernel to Kernel Communication
To communicate between kernel instances, we developed

a kernel-level, pluggable, message passing framework. We
address here our plugin that exploits shared memory and an
hybrid of polling and IPIs (inter-processor interrupts). We
chose a pluggable approach to ease portability and to sup-
port multiple communication channels between kernels. The

1arch/x86/kernel/trampoline_64.S
2arch/x86/kernel/head_64.S

import address space from clone to import

ti
m

e
(m

s
)

 0

 2

 4

 6

 8

 10

 12

1
6

2
5
6

4
k

6
4
k

1
M

1
6
M

1
2
8
M

(a)

 0

 2

 4

 6

 8

 10

 12

1
6

2
5
6

4
k

6
4
k

1
M

1
6
M

1
2
8
M

(b)

address space size (bytes)

Figure 2: Process migration in Popcorn. The time
to import the address space information of the mi-
grated process varying the size of its heap. Figure
(a) migrates a process’s entire address space at once
whereas Figure (b) uses on-demand page migration.

framework provides priority-based synchronous and asyn-
chronous messaging. The format, priority, and synchronicity
of a message is kernel object dependent.

Shared Memory Plugin. The shared-memory plugin uses
cache-aligned private buffers over memory that is mapped
into each kernel’s address space. For unicast messaging, each
kernel allocates its own buffer at boot time and then makes
this physical address available to the other kernels. For mul-
ticast we introduced multicast groups that allow messages
to be passed to all members in the group with a single write
into a shared buffer. Multicast groups are opened and closed
dynamically at runtime; we are currently using them to keep
a distributed process address space consistent across kernels.

To notify a kernel that a message was sent to it we send an
IPI. IPIs on the x86 architecture have non-negligible over-
head. To limit this effect we reduced the number of IPIs by
disabling interrupts when processing a batch of messages.
This allows high-bandwidth communication during periods
of high-demand, while providing low-overhead during peri-
ods of low-demand.

4.5 Task Migration
To migrate processes or threads between kernel instances,

a client/server model has been adopted. When the user or
the scheduler triggers an inter-kernel task migration, a mi-
gration service on the remote kernel is contacted. We have
described thread migration in previous work [11]; here we
consider process migration. From a Linux stand point, we
assume that no OS-level resources are shared between pro-
cesses. To support remote task creation we added a further
argument to sys_clone in order to specify on which kernel
start executing the task.

Process Migration. An inter-kernel process migration com-
prises of the following steps: firstly, the local process which
is to be migrated is stopped. Secondly, all the relevant infor-
mation about the process is transferred to the server where a
dummy process that acts as the migrated process is started
on the remote kernel. Finally, all the transferred informa-

SMP Linux Popcorn Clustered Popcorn

 4

 8

 16

 32

 64

 128

 0 8 16 24 32 40

IS

Class B

(a)

 64

 128

 256

 512

 1024

 2048

 4096

 0 8 16 24 32 40

SP

Class A

(b)

 64

 128

 256

 512

 1024

 2048

 4096

 0 8 16 24 32 40

BT

Class A

(c)

 128

 256

 512

 1024

 2048

 4096

 8192

 0 8 16 24 32 40

CG

Class B

(d)

 64

 128

 256

 512

 1024

 2048

 4096

 0 8 16 24 32 40

LU

Class A

(e)

 4

 8

 16

 32

 64

 128

 0 8 16 24 32 40

MG

Class A

(f)

Figure 3: NPB class B benchmarks in the first col-
umn. NPB class A (smaller problem size) bench-
marks in the other columns. Each subgraph has
time (in cycles ∗ 108) on the y-axis and core count on
the x -axis.

tion about the migrated process is imported into the dummy
process and the process is ready to continue executing.

We use the messaging layer to transfer the process state
between kernels. The state of the process is comprised of the
contents of all registers and its address space. An address
space is comprised of virtual memory area information, and
the map of physical pages to those virtual memory areas. On
homogeneous platforms in order to avoid copying memory
contents, we only reproduce these virtual memory area to
physical memory mappings in the receiving kernel on behalf
of the newly migrated process. To account for the memory
used by each migrated process we leave a shadow process on
each kernel where the process allocated memory.

We benchmarked this process, measuring the time re-
quired to migrate a process in Popcorn by varying the size of
the program’s address space. The results are shown in Fig-
ure 2(a) for upfront migration of the address space, and in
Figure 2(b) for the on-demand counterpart. These results
exclude messaging time, as this varies with hardware and
memory topology. sched_setaffinity() on SMP Linux
takes 0.6ms on average. Importing the address space on
the remote kernel in Linux (installing struct_vms and map-
ping pte_structs) requires a time proportional to the size
of the address space (red area). A task can be migrated
on-demand in 6ms (messaging included).

4.6 Software Network Switch
As is common practice in virtualization, we provide soft-

ware networking between different kernel instances. In our
implementation, the kernel instance that owns the network
card acts as the gateway machine and routes traffic to and
from the other kernel instances. In this setup, each kernel
instance has an associated IP address, and switching is auto-
matically handled at the driver level. A network overlay pro-
vides a single IP amongst all kernels. We developed a kernel-
level network driver that is based on the Linux TUN/TAP
driver but uses IPI for notification and fast shared-memory
ring buffers for communication. Our implementation uses

SMP Linux (OpenMP)
Popcorn (MPI)

Clustered Popcorn (Hybrid)

SMP Linux (Hybrid)
SMP Linux (Nested OpenMP)

 64

 128

 256

 512

 1024

 2048

 4096

 0 8 16 24 32 40

SP

Class A

(a)

 64

 128

 256

 512

 1024

 2048

 4096

 0 8 16 24 32 40

BT

Class A

(b)

 64

 128

 256

 512

 1024

 2048

 4096

 0 8 16 24 32 40

LU

Class A

(c)

 64

 128

 256

 512

 1024

 0 8 16 24 32

SP

Class A

(a)

 64

 128

 256

 512

 1024

 0 8 16 24 32

BT

Class A

(b)

 64

 128

 256

 512

 1024

 0 8 16 24 32

LU

Class A

(c)

Figure 4: A comparison of the “application” bench-
marks in NPB on Popcorn and SMP Linux using
various programming models. The top line com-
pares the most natural programming model for each
OS. The code for Clustered Popcorn comes from
NPB-MZ, so the bottom line compares NPB-MZ on
both Clustered Popcorn and SMP Linux.

the kernel-level messaging framework described earlier for
coordination and check-in.

5. EVALUATION
The purpose of this evaluation is to demonstrate that the

restructuring that we propose in Section 3 can be applied to
Linux while maintaining functionality.

Though our design includes remote task creation and mi-
gration across processors of different ISAs, this is a difficult
problem and the research space is quite sparse. For this rea-
son, the following evaluation focuses on explicitly parallel
benchmarks where tasks do not migrate from their kernels
once created. We evaluated Popcorn using MPI versions of
the NAS Parallel Benchmarks (NPB). We compare Popcorn
to Linux to highlight any performance penalties that arise
from coordinating multiple kernels.

Experimental Setup. We run the following experiments
on a Supermicro H8QG6 equipped with four AMD Opteron
6164 processors, running at 1.7GHz, with 64GB of RAM for
a total of 48 cores in a ccNUMA configuration. We report
measurements on Popcorn configured as one kernel per core
and one kernel per NUMA node (6 cores); we called these
configurations Popcorn and Clustered Popcorn respectively.
For all the experiments we used Linux 3.2.14 on which Pop-
corn is actively developed, and we adopt our version of kexec
(based on version 2.0.3) to boot Popcorn’s kernel instances.

These experiments investigate how our design impacts
compute-bound workloads. We used the MPI versions of
NASA’s NAS Parallel Benchmark (NPB) suite [1], using
the MPICH2 MPI library. We developed a MPI-Popcorn
version of MPICH2 that uses the SSH interface for initial
orchestration and process management, but modifies the
Nemesis [4] sub-system to use inter-kernel shared-memory
for inter-process communication. Although such benchmarks
do not stress the OS, the sys_sched_yield and sys_poll

syscalls are heavily used. We consider these benchmarks
sufficient to demonstrate that Popcorn Linux is functional
and that the homogeneous prototype has acceptable per-
formance, while also demonstrating interesting results for
multiple kernel OSs.

Although we used a 48-core machine, the recorded results
only go up to 36-cores because the NPB MPI benchmarks
cannot run on an arbitrary number of cores. Some require
a power-of-two, others a square number of cores. For each
data point we ran 20 iterations and provide the average run-
time. We chose small data sets (class A and B) because we
wanted OS effects to be visible: longer-running processes are
less influenced by the underlying kernel.

Results. Figure 3 compares the performance of Popcorn
(1-core per kernel), Clustered Popcorn (6-cores per kernel)
and SMP Linux (a single 48-core kernel). For high core
counts, Popcorn is slightly slower than SMP Linux; this is
particularly visible in the IS graph (Figure 3(a)). At low
core-counts, however, Popcorn can experience a slight per-
formance advantage (e.g. in Figure 3(d)) as each kernel
only has one processor, so cache and NUMA locality are
enforced and the scheduler cannot move a process to a dif-
ferent processor. Similarly, every processor in a Clustered
Popcorn kernel belongs to a single NUMA-zone and share
an L3 cache. Popcorn’s reduced performance at high core
counts is from the overhead of having a kernel per core. Hav-
ing six cores per kernel in Clustered Popcorn is enough to
eliminate this overhead.

Finally, as OpenMP is a more natural method of writing
parallel programs in SMP Linux than MPI, we compare the
performance of this against Popcorn in Figure 4. As this is
comparing programming models, we only consider the ap-
plication benchmarks within NPB; these are also the bench-
marks available in the multi-zone version of NPB, thus allow-
ing us to try hybrid MPI/OpenMP models. The top row of
Figure 4 shows that OpenMP on SMP Linux is, predictably,
faster than MPI on Popcorn, though the OpenMP version
of SP has scaling issues. The hybrid MPI/OpenMP code
on Clustered Popcorn, however, out-performs both. The
bottom line of Figure 4 shows that running the same hy-
brid code on SMP Linux has almost identical performance,
though the nested OpenMP implementation is slower. Thus,
Clustered Popcorn is as efficient as SMP Linux for the op-
timal versions of these benchmarks.

6. CONCLUSION
In this paper, we have begun to address the problem of

how to re-design a traditional SMP OS to allow it to run on
heterogeneous-ISA hardware. We did this while extending
common design principles that are found in SMP OS design,
such as resource sharing. We claim that an OS running on a
heterogeneous-ISA platform should be made up of different
kernel instances, compiled for each ISA, but with coherent
and replicated OS state. We deployed the necessary features
to realize our design principles in Linux and found that they
do not hinder performance when compared to SMP Linux.

As future work, we would like to deploy Popcorn Linux
on genuine heterogeneous ISA hardware. We will explore
how to exploit such platforms, not only to improve the co-
ordinated usage of hardware resources, but also to improve
performance by exploiting the heterogeneous nature of these
platforms. This will likely require compiler-based modifica-
tions such that a program can interact with the OS scheduler

to allow optimal mapping.
The full sources for Popcorn Linux and associated tools

can be found at http://www.popcornlinux.org

7. ACKNOWLEDGMENTS
This work is supported by the US Office of Naval Research

under Contract N00014-12-1-0880.

References
[1] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning,

R. L. Carter, L. Dagum, R. A. Fatoohi, P. O. Freder-
ickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,
V. Venkatakrishnan, and S. K. Weeratunga. The NAS
parallel benchmarks summary and preliminary results.
In Supercomputing ’91, 1991.

[2] A. Baumann, P. Barham, P.-E. Dagand, T. Harris,
R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and
A. Singhania. The multikernel: a new OS architecture
for scalable multicore systems. SOSP ’09, 2009.

[3] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev,
M. F. Kaashoek, R. Morris, and N. Zeldovich. An anal-
ysis of Linux scalability to many cores. OSDI’10, 2010.

[4] G. M. D. Buntinas and W. Gropp. Design and eval-
uation of Nemesis, a scalable, low-latency, message-
passing communication subsystem. 2006.

[5] M. DeVuyst, A. Venkat, and D. M. Tullsen. Execution
migration in a heterogeneous-ISA chip multiprocessor.
In ASPLOS XVII, 2012.

[6] T. Himosawa, H. Matsuba, and Y. Ishikawa. Logical
partitioning without architectural supports. In COMP-
SAC ’08.

[7] A. Kale, P. Mittal, S. Manek, N. Gundecha, and
M. Londhe. Distributing subsystems across different
kernels running simultaneously in a Multi-Core archi-
tecture. In CSE XIV, 2011.

[8] T. Li, P. Brett, R. Knauerhase, D. Koufaty,
D. Reddy, and S. Hahn. Operating system support
for overlapping-ISA heterogeneous multi-core architec-
tures. In HPCA ’10, 2010.

[9] E. B. Nightingale, O. Hodson, R. McIlroy, C. Haw-
blitzel, and G. Hunt. Helios: Heterogeneous multipro-
cessing with satellite kernels. In SOSP ’09, 2009.

[10] Y. Nomura, R. Senzaki, D. Nakahara, H. Ushio,
T. Kataoka, and H. Taniguchi. Mint: Booting multiple
linux kernels on a multicore processor. In BWCCA ’11,
2011.

[11] M. Sadini, A. Barbalace, B. Ravindran, and F. Quaglia.
A page coherency protocol for popcorn replicated-
kernel operating system. In MARC V, 2013.

[12] A. Schüpbach, S. Peter, A. Baumann, T. Roscoe,
P. Barham, T. Harris, and R. Isaacs. Embracing di-
versity in the barrelfish manycore operating system. In
MMCS ’08, 2008.

[13] S. Srinivasan, R. Iyer, L. Zhao, and R. Illikkal. Het-
eroScouts: Hardware Assist for OS Scheduling in Het-
erogeneous CMPs. In SIGMETRICS ’11, 2011.

